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1 Model Setup

1.1 Representative Households

1.1.1 Preferences

Households maximize expected lifetime utility: The household maximizes

max
{Ct,Ht,Lt}

E0

∞∑
t=0

βt [ lnCt − ξ ln(1−Ht) + ϕ lnLt] ,

where 0 < β < 1 is the subjective discount factor and ξ > 0 governs the Frisch elasticity
η = 1

1+ξ
after log-linearization.

• Ct is consumption,

• Ht is hours.

Consumption is a composite of the domestic final good and the imported good.

Ct =
[
(1− γ)

1
ϵ (HMt)

ϵ−1
ϵ + γ

1
ϵ (IMt)

ϵ−1
ϵ

] ϵ
ϵ−1

(1)

From expenditure duality, the ideal price index for the aggregator is:

Pt =
[
(1− λ)(PH

t )1−ε + λ(P F
t )1−ε

] 1
1−ε (2)

For liquidity services Lt we have:

Lt =
[
(1− θ)M

ζ−1
ζ

t + θ (BUS
t /Pt)

ζ−1
ζ

] ζ
ζ−1
. (3)
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1.1.2 Budget Constraint (in $)

Setting the domestic price level to one and denoting the gross real returns as

RUS
t = 1 + rUS

t + ψt, RF
t = (1 + rFt )

St+1

St

,

we need to change the −ψt to a +ψt, because otherwise, if RUS
t = RF

t in equilibrium, then
rUS
t > rFt , which is the opposite of reality. US treasuries pay among the least interest because
of the convenience yield on the dollar. Hence the convenience yield needs to be positive. the
period-t constraint becomes

PtCt +PtIt +Mt −Mt−1 +
BUS

t+1

RUS
t

+
St P

F
t b

F
t+1

RF
t

= WtHt +Rk,tKt−1 +BUS
t + St P

F
t b

F
t −PtTt,

with capital evolving asKt+1 = f
(

It
Kt

)
Kt+(1−δ)Kt where f(·) is specified so that f(0) = 0,

f(x) = 1, and f ′(x) = 1.
Here:

• It is investment

• BUS
t denotes safe U.S. government bonds,

• BF
t denotes foreign bonds (with face value in f , converted using St/Pt),

• bFt denotes the foreign asset position in units of foreign goods: bFt ≡ BF
t

PF
t

• rUS
t and rFt are the yields on domestic and foreign bonds respectively,

• Tt represents lump-sum taxes.

• ψt is the convenience yield on domestic bonds.

• HMt represents home inputs.

• IMt represents foreign goods (imports).

L = E0

∞∑
t=0

βt
[
lnCt − ξ ln(1−Ht) + ϕ lnLt

+ λt
(
WtHt +Rk,tKt−1 +Mt −Mt−1 +BUS

t + StP
F
t b

F
t − PtTt − PtCt − PtIt −

BUS
t+1

RUS
t

− StPF
t bFt+1

RF
t

)]
.

HMt = (1− λ)

(
PH
t

Pt

)−ε

Ct, (4)

IMt = λ

(
P F
t

Pt

)−ε

Ct (5)
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[Ct] :
1

Ct

= λtPt

[Ht] : ξ
1

1−Ht

= λtWt

[BUS
t ] : λt

1

RUS
t

= βEt[λt+1]

[bFt ] : λt
StP

F
t

RF
t

= βEt[λt+1St+1P
F
t+1]

Therefore we have:

[BUS
t ] 1 = βEt

[
λt+1

λt
RUS

t

]
[bFt ] 1 = βEt

[
λt+1St+1P

F
t+1

λtStP F
t

RF
t

]

Derivation of the Log-Linearized Convenience Yield

1. Setup

Define:

bt ≡
BUS

t

Pt

(real bond holdings)

Then:

Lt =

[
(1− θ)M

ζ−1
ζ

t + θb
ζ−1
ζ

t

] ζ
ζ−1

2. First-Order Condition with Respect to Bonds

The marginal utility of bond holdings is:

ψt ≡
∂U

∂bt
= ϕ · 1

Lt

· ∂Lt

∂bt

To compute ∂Lt/∂bt, write:

Lt = Z
ζ

ζ−1

t , where Zt = (1− θ)M
ζ−1
ζ

t + θb
ζ−1
ζ

t

Then:

∂Lt

∂bt
=

ζ

ζ − 1
Z

1
ζ−1

t · θ · ζ − 1

ζ
b
− 1

ζ

t = Z
1

ζ−1

t · θ · b
− 1

ζ

t

Substituting back in:
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ψt = ϕ · 1

Lt

· Z
1

ζ−1

t · θ · b
− 1

ζ

t

But since Lt = Z
ζ

ζ−1

t , it follows that:

Z
1

ζ−1

t = L
1/ζ
t ⇒ 1

Lt

· Z
1

ζ−1

t = L
−1+1/ζ
t

Thus:

ψt = ϕ · θ · b−1/ζ
t · L−1+1/ζ

t

3. Log-Linearization

Let steady-state values be denoted with bars:

ψ̄, b̄, L̄

Define log-deviations:

ψ̂t ≡ lnψt − ln ψ̄, b̂t ≡ ln bt − ln b̄, L̂t ≡ lnLt − ln L̄

Then:

lnψt = ln(ϕθ)− 1

ζ
ln bt +

(
−1 +

1

ζ

)
lnLt

Taking log deviations:

ψ̂t = lnψt − ln ψ̄

= −1

ζ
(ln bt − ln b̄) +

(
−1 +

1

ζ

)
(lnLt − ln L̄)

= −1

ζ
b̂t −

(
1− 1

ζ

)
L̂t

4. Log-Linearization of the Liquidity Aggregator

From the CES form, the log-linear approximation is:

L̂t = (1− θ) M̂t + θ b̂t

Substitute into the expression for ψ̂t:

ψ̂t = −1

ζ
b̂t −

(
1− 1

ζ

)[
(1− θ) M̂t + θ b̂t

]
= −(1− θ)

(
1− 1

ζ

)
M̂t −

[
1

ζ
+ θ

(
1− 1

ζ

)]
b̂t
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Simplifying the coefficients:

ψ̂t = −(1− θ) M̂t −
(
θ +

1

ζ

)
b̂t

5. Final Result

ψ̂t = −(1− θ) M̂t −
(
θ +

1

ζ

)
b̂t

This is the log-linearized expression for the convenience yield ψt, consistent with micro-
foundations where both money and bonds provide liquidity services.

Capital Accumulation:
For the capital accumulation equation we have

lnKt+1 = ln

[
f

(
It
Kt

)
Kt + (1− δ)Kt

]
Totally differentiating and rearranging terms yields:

kt+1 = δkt +

(
I

K

)
it − δkt + (1− δ)kt

which gives us:

kt+1 = δit + (1− δ)kt (6)

Tobin’s Q:

From the FOC for It we have −λt + ϕtf
′
(

It
Kt

)
= 0, which entails that ϕt = λt

f ′(It/Kt)
.

Tobin’s Q gives us Q = ϕt

λt
= λt/f ′(It/Kt)

λt
, which yields:

Qt =

[
f ′
(
It
Kt

)]−1

when we totally differentiate this after taking logs we get:

qt = − 1

Q

[
f ′′

(
I

K

)(
dIt
K

− I

K2

)
dKt

]
which yields:

qt = −f ′′(δ)δ[it − kt] (7)

Aggregate Production Function

5



Our aggregate production function is specified as:

dtYt = AtK
α
t H

Ω(1−α)
t (He

t )
(1−Ω)(1−α)

where dt is the standard price dispersion equation. Linearizing it, we get:

yt = at + αkt + Ω(1− α)ht (8)

Inflation Utilizing the optimal reset price and the price dispersion equations, linearizing
them, and then combining conditions gets us our inflation equation:

πt = −(1− θ)(1− θβ)

θ
xt + βEtπt+1 (9)

where xt is the real marginal cost.

Net Worth To start, we assume that only the fraction ρ of entrepreneurs survive each
period. Those that die ”eat” their net worth:

Ce
t = (1− ρ)Vt

Where Vt represents capital equity in the following manner:

Vt = (RK
t −Rt−1)(Qt−1Kt −Nt−1) +Rt−1Nt−1

While the entrepreneur remains alive, his net worth can be defined as:

Nt = ρVt +W e
t

Where W e
t is the entrepreneur’s wages. Here, ρ is close to 1 and entreprenurial wages are

small. As a result, we can say that:

cet = nt (10)

We assume that net worth follows:

Nt = ρ[(Rk
t −Rt−1)Qt−1Kt + γt(Qt−1Kt −Nt) +Rt−1Nt−1] + we

t

with

γt = τ

∫ ω̄

0

ωtf(ωt)R
k
tQt−1Ktdωt

After taking logs and totally differentiating we end up with:

nt =
ρRK

R
(rkt − rt) + ρR(rt−1 + nt−1) + ρ

K

N

(
Rk

R
− 1

)
(rkt + qt−1 + kt) +

W e

N
we

t (11)
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1.2 Entrepreneurs

The default cutoff is implicitly defined by

Zt+1

(
QtKt+1 −Nt

)
= ω̄t+1R

k
t+1QtKt+1 . (12)

Define the leverage ratio as

Lt ≡
QtKt+1

Nt

.

Then the loan rate satisfies:

Zt+1 = ω̄t+1R
k
t+1

Lt

Lt − 1
. (13)

The expected entrepreneurial income from obtaining a loan is∫ ∞

ω̄t+1

ωt+1 ϕ(ωt+1) dωt+1R
k
t+1QtKt+1 −

[
1− Φ(ω̄t+1)

]
Zt+1

(
QtKt+1 −Nt

)
.

Using equation 16 to substitute for Zt+1, the expression becomes∫ ∞

ω̄t+1

ωt+1 ϕ(ωt+1) dωt+1R
k
t+1QtKt+1 −

[
1− Φ(ω̄t+1)

]
ω̄t+1R

k
t+1QtKt+1 .

Define

f(ω̄t+1) ≡
∫ ∞

ω̄t+1

ωt+1 ϕ(ωt+1) dωt+1 −
[
1− Φ(ω̄t+1)

]
ω̄t+1 .

Then the expected entrepreneurial income is

f(ω̄t+1)R
k
t+1QtKt+1 .

(Definition of f(ω̄t+1) as given above.)
Rewriting in terms of leverage Lt =

QtKt+1

Nt
, the firm’s expected return becomes

f(ω̄t+1)R
k
t+1 Lt .

The lender’s expected return from the project is∫ ω̄t+1

0

ωt+1 (1− µ)Rk
t+1QtKt+1 ϕ(ωt+1) dωt+1 +

[
1− Φ(ω̄t+1)

]
Zt+1

(
QtKt+1 −Nt

)
.

Using equation 16 again to eliminate Zt+1, the lender’s expected return becomes[
(1− µ)

∫ ω̄t+1

0

ωt+1 ϕ(ωt+1) dωt+1 +
(
1− Φ(ω̄t+1)

)
ω̄t+1

]
× Rk

t+1QtKt+1 .

Define

g(ω̄t+1) ≡ (1− µ)

∫ ω̄t+1

0

ωt+1 ϕ(ωt+1) dωt+1 +
(
1− Φ(ω̄t+1)

)
ω̄t+1 .
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Then the lender’s return on the loan is

Rk
t+1 g(ω̄t+1)

Lt

Lt − 1
.

The entrepreneur chooses ω̄t+1 and Lt to maximize his expected return:

max
ω̄t+1, Lt

Et

[
Rk

t+1 f(ω̄t+1)Lt

]
,

subject to the lender’s participation constraint

Rk
t+1 g(ω̄t+1)

Lt

Lt − 1
≥ Rt .

Equivalently, the participation constraint can be written as

Rk
t+1 g(ω̄t+1)Lt =

(
Lt − 1

)
Rt .

Form the Lagrangian for the entrepreneur’s problem:

L = Et

{
Rk

t+1 f(ω̄t+1)Lt + Λt+1

[
Rk

t+1 g(ω̄t+1)Lt −Rt(Lt − 1)
]}

.

Taking the derivative with respect to ω̄t+1 yields:

Et

{
Rk

t+1 f
′(ω̄t+1)Lt + Λt+1R

k
t+1 g

′(ω̄t+1)Lt

}
= 0 .

Differentiating with respect to Lt gives:

Et

{
Rk

t+1 f(ω̄t+1) + Λt+1

[
Rk

t+1 g(ω̄t+1)−Rt

]}
= 0 .

The participation constraint (which is binding) is

Rk
t+1 g(ω̄t+1)Lt = (Lt − 1)Rt .

At steady state the multiplier satisfies

Λ = −f
′(ω̄)

g′(ω̄)
.

Linearize around the steady state. Define the proportional deviation

ω̂t+1 ≡
dω̄t+1

ω̄

and let λt+1 denote the deviation of Λt+1. Then, to first order,

Ψ ω̂t+1 = λt+1 ,
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where

Ψ = ω̄

(
f ′′(ω̄)

f ′(ω̄)
− g′′(ω̄)

g′(ω̄)

)
.

Linearize to obtain
rkt+1 − rt + lt +Θf ω̂t+1 = λt+1 ,

with

Θf ≡ ω̄
f ′(ω̄)

f(ω̄)
,

and where lt denotes the percentage deviation of leverage.
Linearize to get

rkt+1 − rt +Θg ω̂t+1 =
1

L− 1
lt ,

where

Θg ≡ ω̄
g′(ω̄)

g(ω̄)
.

Now I derive the financial accelerator (FA) leverage–spread equation with a CMR–style
risk shock. The derivation begins from the Bernanke–Gertler–Gilchrist (BGG) contracting
block (as in Sims’ bbg ers notes final.pdf) and then introduces a time–varying dispersion
parameter (denoted σt) in the idiosyncratic return. This extra state leads to an augmentation
in the external finance premium equation, resulting in:

rk,t+1 − rt = −ν
[
nt − qt − kt+1

]
+ χ σ̂t,

where σ̂t is the (log) deviation of σt from its steady state.

1.2.1 Recap of the BGG Setup (Without Risk Shocks)

In the standard BGG model, we denote (all variables are log–deviations from the steady
state):

[label=–]qt: (log) price of capital, kt+1: capital chosen in period t for use in t + 1,
nt: entrepreneurs’ net worth, rk,t+1: ex–post real return on capital, rt: risk–free real

interest rate, ω̄t+1: default cutoff in idiosyncratic return, Lt ≡
qtkt+1

nt

: leverage ratio,

f(ω̄t) and g(ω̄t): respectively, the share of returns kept by the entrepreneur and the
lender, and λt+1: the Lagrange multiplier (from the lender’s participation constraint).

Sims’ notes present the following three linearized conditions (Sims’ eqs. (53)–(55)):

Ψ ˆ̄ωt+1 = λt+1,

rk,t+1 − rt + ℓt +Θf ˆ̄ωt+1 = λt+1,

rk,t+1 − rt +Θg ˆ̄ωt+1 =
1

L− 1
ℓt,
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where we define the leverage wedge as

ℓt ≡ qt + kt+1 − nt,

and ˆ̄ωt+1 denotes the log–deviation of the cutoff (i.e. ˆ̄ωt+1 = d ln ω̄t+1). The parameters Ψ,
Θf , and Θg are steady–state elasticities derived from the functions f and g.

Eliminating ˆ̄ωt+1 and λt+1 from 53–55 yields the BGG external finance premium:

rk,t+1 − rt = −ν ℓt with ν =
Ψ

Ψ(L− 1)−ΘfL
.

In other words,

rk,t+1 − rt = −ν
[
nt −

(
qt + kt+1

)]
.

1.3 Introducing the CMR Risk Shock

1.3.1 Time–Varying Dispersion in Idiosyncratic Returns

CMR assume that the idiosyncratic return shock follows a lognormal distribution with a
time–varying dispersion parameter σt:

ωt+1 ∼ exp
(
σt ut+1

)
, ut+1 ∼ N (0, 1).

Its law of motion is given by
log σt = ρσ log σt−1 + εσt .

For convenience, define the log deviation (or percentage deviation) of σt from its steady state
as

σ̂t ≡ log σt − log σ.

1.3.2 Dependence of f and g on σt

In the standard derivation, the functions f and g determine the shares of gross returns
retained by the entrepreneur and the lender. Now, because the density

ϕt(ω)

depends on σt, we have
ft = f(ω̄t, σt), gt = g(ω̄t, σt).

As a result, the log derivatives pick up extra terms. Define:

Θσ
f ≡ ∂ ln f

∂ lnσ
and Θσ

g ≡ ∂ ln g

∂ lnσ
.

Similarly, if the multiplier λt depends on σt, define

Ξ ≡ ∂λ

∂ lnσ

/∂ω̄
∂λ

.
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1.4 Derivation of the FA–CMR Equation

1.4.1 Log–Linearized System Including Risk Shock

Re–linearize the three FOCs, retaining first–order terms in σ̂t. This yields:

Ψ ˆ̄ωt+1 + Ξ σ̂t = λt+1,

rk,t+1 − rt + ℓt + Θf ˆ̄ωt+1 + Θσ
f σ̂t = λt+1,

rk,t+1 − rt + Θg ˆ̄ωt+1 + Θσ
g σ̂t =

1

L− 1
ℓt.

1.4.2 Eliminating ˆ̄ωt+1 and λt+1

1: Solve Equation for λt+1:
λt+1 = Ψ ˆ̄ωt+1 + Ξ σ̂t.

2: Substitute this expression into Equation:

rk,t+1 − rt + ℓt +Θf ˆ̄ωt+1 +Θσ
f σ̂t = Ψ ˆ̄ωt+1 + Ξ σ̂t.

Rearrange to isolate ˆ̄ωt+1:

(Θf −Ψ) ˆ̄ωt+1 = −ℓt + (Ξ−Θσ
f ) σ̂t. (14)

3: Substitute λt+1 into Equation:

rk,t+1 − rt +Θg ˆ̄ωt+1 +Θσ
g σ̂t =

1

L− 1
ℓt.

We now have two equations (and the above) that contain ˆ̄ωt+1 and σ̂t.
4: Solve for ˆ̄ωt+1:

ˆ̄ωt+1 =
−ℓt + (Ξ−Θσ

f ) σ̂t

Θf −Ψ
.

Insert this into the third equation:

rk,t+1 − rt +Θg

−ℓt + (Ξ−Θσ
f ) σ̂t

Θf −Ψ
+Θσ

g σ̂t =
1

L− 1
ℓt.

Multiply both sides by Θf −Ψ:

(Θf −Ψ)(rk,t+1 − rt) = −Θg ℓt + (Θf −Ψ)
1

L− 1
ℓt +

[
Θg(Ξ−Θσ

f ) + (Θf −Ψ)Θσ
g

]
σ̂t.

Thus,

rk,t+1 − rt = −
Θg − Θf−Ψ

L−1

Θf −Ψ
ℓt +

Θg(Ξ−Θσ
f ) + (Θf −Ψ)Θσ

g

Θf −Ψ
σ̂t. (15)
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1.4.3 Step 5: Use the Steady–State Identity and Define New Parameters

Sims shows that in steady state one obtains an identity relating the elasticities:

Θg(L− 1) = −Θf .

Using this identity to simplify the coefficient on ℓt and defining:

ν ≡ Ψ

Ψ(L− 1)−ΘfL
, χ ≡

Ξ(L− 1)−Θσ
fL+Θσ

g (L− 1)

Ψ(L− 1)−ΘfL
,

and recalling that ℓt = qt + kt+1 − nt, Equation becomes

rk,t+1 − rt = −ν
[
nt − qt − kt+1

]
+ χ σ̂t.

This is the FA–CMR leverage–spread equation with a risk shock. The coefficient ν is identical
to its definition in the BGG model; it captures how the leverage ratio affects the external
finance premium. The new coefficient χ reflects the sensitivity of the spread to the risk shock
σ̂t. A positive σ̂t (i.e., an increase in the dispersion of the idiosyncratic shocks) increases the
external finance premium, even if leverage is unchanged.

1.5 Foreign Block

Letting St denote the nominal exchange rate of the home currency (the price of one unit
of foreign currency in terms of the home currency), we have the law of one price:

P F
t = StP

F∗
t

Where P F
t is the domestic-currency price of the foreign good, and P F∗

t is the foreign currency
price of those goods. We define the prices of the domestic and the foreign goods in terms of
the consumer price index Pt:

pHt =
PH
t

Pt

pFt =
P F
t

Pt

Where we indentify pFt as the real exchange rate. We can define the terms of trade as:

TOTt =
PH
t

P F
t

(16)

Which yields allows us to specify the home country’s export demand as:

EXt = TOT−σ∗

t WTt (17)

Define the CPI inflation rate, foreign inflation rate, and the rate of change of the nominal
exchange rate, respectively, as:

πt =
Pt

Pt−1

12



πF
t =

P F
t

P F
t−1

σt+1 =
St+1

St

Then we have:
πF
t = σt + π∗

t

Setting foreign-currency import price to be constant (π∗
t = 0), we get πF

t = σt. In logs, we
have pFt = (lnP F

t − lnPt). Therefore,

pFt − pFt−1 = πF
t − πt

This give us the condition:
pFt − pFt−1 = σt − πt (18)

Using the two Euler equations from the household’s problem, we can derive the Uncovered
Interest Rate Parity (UIP), starting wth the FOC on BUS

t :

1

CtPt

= βEt

[
1

Ct+1Pt+1

RUS
t

]
Defining Pt+1

Pt
= Πt+1, and using the fact that RUS

t = 1 + rUS
t + ψt, by log-linearizing the

condition we get:

ct = −rUS
t − ψt + ct+1 + πt+1

Performing the same procedure in the case of bFt yields:

ct − st = −rFt + ct+1 − st+1 − πF
t+1 + πt+1

Combining these two conditions gives us UIP:

st+1 − st = rUS
t − rFt + ψt − πF

t+1 (19)

1.6 Wage Inflation

Under Calvo wage setting, a household that reoptimizes in period t chooses W ∗
t to max-

imize
∞∑
j=0

(βθw)
jEt

[
Λt,t+j

(
UC,t+j W

∗
t Ht+j|t − UH,t+j Ht+j|t

)]
,

subject to

Ht+j|t =
( W ∗

t

Wt+j

)−φw

Ht+j.

Upon taking FOCs, we get the standar optimal reset-wage condition:

W ∗
t =

φw

φw − 1

∑∞
j=0(βθw)

jEt[Λt,t+jUC,t+jHt+jW
φw

t+jmrst+j]∑∞
j=0(βθw)

jEt[Λt,t+jUC,t+jHt+jW
φw−1
t+j ]
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Linearizing the first-order condition around a symmetric steady state and defining

wt ≡ lnWt − lnPt, wgapt ≡ wt −MRSt,

Where MRSt =
UH,t

UC,t
.

This yields

w∗
t − wt = − 1− β θw

θw︸ ︷︷ ︸
ζw

∞∑
j=0

(β θw)
jEt

[
wgapt+j

]
. (20)

1.6.1 Aggregation to Wage Inflation

The Calvo law of motion for aggregate wages implies

wt = θw wt−1 + (1− θw)w
∗
t ,

so gross wage inflation is

πW
t ≡ wt − wt−1 = (1− θw)

(
w∗

t − wt

)
. (21)

Substitute (19) into (20):

πW
t = − (1− θw) ζw

∞∑
j=0

(β θw)
jEt

[
wgapt+j

]
.

1.6.2 Forming the NKPC

Compute the one-period-ahead expectation:

β Et[π
W
t+1] = − (1− θw) ζw

∞∑
j=1

(β θw)
jEt

[
wgapt+j

]
.

Subtract from πW
t :

πW
t − β Et[π

W
t+1] = (1− θw) ζw wgapt.

1.6.3 Final Form

Define

κw ≡ (1− θw) ζw =
(1− θw) (1− β θw)

θw
.

Thus the final wage inflation rate:

πW
t = β Et[π

W
t+1] − κw wgapt.
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1.7 Log-Linearized Equilibrium Conditions

yt = hmt + γygt + ext + it (1)

ct = −rt + Et[ct+1]− ψt + πt+1 (2)

cet = nt (3)

Et[rkt+1]− rt = −ν(nt − qt − kt) + χσs
t (4)

rkt = (1− ε)(yt − kt−1 − xt) + ε qt − qt−1 (5)

qt = φ(it − kt−1) (6)

yt = at + α kt−1 + (1− α) Ωht (7)

yt − ht − xt − ct = η−1ht (8)

kt = δ it + (1− δ) kt−1 (9)

nt = γ RRks(rkt − rt−1) + rt−1 + nt−1 + ent (10)

rnt = θi rnt−1 + (1− θi)
(
θπ π

(4)
t + θy y

gap
t

)
+ srn e

rn
t (11)

rnt = rt + Et[πt+1] (12)

at = ρa at−1 + sa e
a
t (13)

gt = ρg gt−1 + sg e
g
t (14)

ℓt = qt + kt − nt (15)

hmt = ct − σcf p
H
t (16)

pHt − pHt−1 = πH
t − πt (17)

πt = (1− τopen) π
H
t + τopen σt (18)

πH
t = β Et[π

H
t+1]− κp xt (19)

σt = st − st−1 (20)

st − st−1 = rt−1 − rFt−1 + ψt−1 − πF
t (21)

ext = −ε tott + wtt (22)

tott = pHt − pFt (23)

pFt − pFt−1 = σt − πt (24)

wtt = ρwtwtt−1 + ψwt σt + σwt e
wt
t (25)

σs
t = ρσ σ

s
t−1 + sσ e

σ
t (26)

imt = ct − σcf p
F
t (27)

πW
t = β Et[π

W
t+1]− κw wgapt (28)

wgapt − wgapt−1 = πW
t − πt (29)

ψt = −(1− θℓ)Mt −
(
θℓ +

1

ζp

)
bUS
t (30)

Lt = (1− θℓ)Mt + θℓ b
US
t (31)

Mt = ρM Mt−1 + eMt (32)
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bUS
t = ρb b

US
t−1 + (1− ρb) (γy gt + (1− γy) yt) (33)

2 Notes

Expenditure Minimization and Relative Demand Deriva-

tion

We assume households consume a CES composite good Ct made up of domestically
produced goods HMt and imported goods IMt, according to the Armington aggregator:

Ct =
[
(1− λ)1/ε(HMt)

ε−1
ε + λ1/ε(IMt)

ε−1
ε

] ε
ε−1

, 0 < λ < 1, ε > 1 (1)

The household chooses {HMt, IMt} to minimize the total cost of achieving a given Ct,
taking prices as given.

Expenditure Minimization Problem

Let PH
t = 1 (normalized domestic price) and let P F

t denote the relative price of imported
goods (in domestic good units). The problem is:

min
HMt, IMt

HMt + P F
t · IMt

subject to: Ct =
[
(1− λ)1/ε(HMt)

ε−1
ε + λ1/ε(IMt)

ε−1
ε

] ε
ε−1

Lagrangian

Form the Lagrangian function with multiplier µt:

L = HMt + P F
t IMt

− µt

([
(1− λ)1/ε(HMt)

ε−1
ε + λ1/ε(IMt)

ε−1
ε

] ε
ε−1 − Ct

)

First-Order Conditions

Take the partial derivative with respect to HMt:

∂L
∂HMt

= 1− µt ·
ε

ε− 1

[
(1− λ)1/ε(HMt)

ε−1
ε + λ1/ε(IMt)

ε−1
ε

] 1
ε−1 · (1− λ)1/ε · (HMt)

−1/ε = 0

Similarly, for IMt:

∂L
∂IMt

= P F
t − µt ·

ε

ε− 1

[
(1− λ)1/ε(HMt)

ε−1
ε + λ1/ε(IMt)

ε−1
ε

] 1
ε−1 · λ1/ε · (IMt)

−1/ε = 0
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Relative Demand Equation

Divide the FOCs to eliminate µt and the bracketed composite term:

1

P F
t

=
(1− λ)1/ε

λ1/ε
·
(
IMt

HMt

)1/ε

⇒ HMt

IMt

=
1− λ

λ
·
(

1

P F
t

)ε

HMt

IMt

=
1− λ

λ

(
1

P F
t

)ε

(2)

This equation shows that the ratio of domestic to imported goods depends on their
relative price and the elasticity of substitution ε.

We begin with the CES Armington aggregator for the consumption bundle:

Ct =
[
(1− λ)1/ε(HMt)

ε−1
ε + λ1/ε(IMt)

ε−1
ε

] ε
ε−1

(1)

We also have the relative demand condition (derived from FOCs):

HMt

IMt

=
1− λ

λ

(
1

P F
t

)ε

⇒ HMt =
1− λ

λ

(
1

P F
t

)ε

IMt (2)

Step: Plug (2) into (1) to eliminate HMt

Substitute equation (2) into equation (1):

Ct =

[
(1− λ)1/ε

(
1− λ

λ
· 1

P F
t

) ε−1
ε

(IMt)
ε−1
ε + λ1/ε(IMt)

ε−1
ε

] ε
ε−1

=

[
(IMt)

ε−1
ε ·

{
(1− λ)1/ε

(
1− λ

λ
· 1

P F
t

) ε−1
ε

+ λ1/ε

}] ε
ε−1

= IMt ·

[
(1− λ)1/ε

(
1− λ

λ
· 1

P F
t

) ε−1
ε

+ λ1/ε

] ε
ε−1

Solve for IMt

IMt =
Ct[

(1− λ)1/ε
(

1−λ
λ

· 1
PF
t

) ε−1
ε

+ λ1/ε
] ε

ε−1

Define the price index Pt

From expenditure duality, the ideal price index for the aggregator is:

Pt =
[
(1− λ)(PH

t )1−ε + λ(P F
t )1−ε

] 1
1−ε (3)

If PH
t = 1, this simplifies to:

Pt =
[
(1− λ) + λ(P F

t )1−ε
] 1

1−ε
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Final Result: Level Demands

We now obtain the Marshallian demand equations:

HMt = (1− λ)

(
PH
t

Pt

)−ε

Ct, IMt = λ

(
P F
t

Pt

)−ε

Ct (4)

Below is a simulation of a one standard deviation risk shock.

Figure 1: Model IRFs

IRFs of model variables to a one standard deviation risk shock.
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