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1 Model Setup

1.1 Representative Households
1.1.1 Preferences

Households maximize expected lifetime utility: The household maximizes

max E t1InC, — €In(1 — H,) + ¢InL,],
{Ci, Hi,Li} 0;5[ ¢+ — &in( ) + ¢In L]

where 0 < 8 < 1 is the subjective discount factor and £ > 0 governs the Frisch elasticity
— after log-linearization.
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e (), is consumption,
e H, is hours.

Consumption is a composite of the domestic final good and the imported good.

0= [ = M) T 4t 1) =] (1)

From expenditure duality, the ideal price index for the aggregator is:
P = [(L= (R + BTy 2 ®)

For liquidity services L; we have:

L= [@-0)37 romrs Py 3)



1.1.2 Budget Constraint (in $)
Setting the domestic price level to one and denoting the gross real returns as

St+1

RYS = 14+U5 £y, RF = (145 S
t

we need to change the —1); to a +1;, because otherwise, if RVS = RF in equilibrium, then

US > rFwhich is the opposite of reality. US treasuries pay among the least interest because
of the convenience yield on the dollar. Hence the convenience yield needs to be positive. the
period-t constraint becomes

PCy+ P I, + My — M,
tCr + L dy + My t1+jos pr

= WiH,+ Ry, Ky + BtUS + 5 Pthf — BT,

with capital evolving as K;.1 = f (ﬁ) K+ (1—0)K; where f(-) is specified so that f(0) = 0,
flx)=1,and f'(z) =1

Here:
e ], is investment
e BYS denotes safe U.S. government bonds,

e B! denotes foreign bonds (with face value in f, converted using S;/F),

e b denotes the foreign asset position in units of foreign goods: b’ = Pi
e V% and rf" are the yields on domestic and foreign bonds respectively,

e T, represents lump-sum taxes.
e 1, is the convenience yield on domestic bonds.
e H M, represents home inputs.

e [ M, represents foreign goods (imports).

L= EOZBt[ant —¢ln(1— H) + ¢In L,

t=0
+ N (WiH, + Ry Ky 4 + My — My_y + BYS + S,PFof — BT, — BC, — P, — Rt;; - StPRﬁ
PH\"*
HM, = (1-)\) <L) C;, (4)
P
PPN\
IM; = A | =%
() @ (5)
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Therefore we have:

B 1= m | ]
t
At-i-lSt-i-lPtFl
bF] 1= BE, | SHo b pE
[ t ] 5 t |: )\tStPtF Rt

Derivation of the Log-Linearized Convenience Yield

1. Setup
Define:
Us
by = —L (real bond holdings)
I
Then:

Li= |(1—=0)M, ¢ +6b°

2. First-Order Condition with Respect to Bonds
The marginal utility of bond holdings is:

ou 1 0L,

A Y

To compute 0L,;/0b;, write:

< 1 -1
Li=25", where Z,=(1-60)M,° +06b,°
Then:

Substituting back in:



1 A -
¢t:¢‘ft'zt< 1'0'bt

S|

.
But since L; = Z ", it follows that:

L e v

1
-1 1/¢
Zt<1:Lt/ = ¢ ¢

t

Thus:

Vi=¢-0- bt_l/g . Lt—1+1/C

3. Log-Linearization

Let steady-state values be denoted with bars:

Define log-deviations:
7@ =In1;, — In, ZA)t =lnb, — Inb, Li=lnL,—InL

Then:

Invy, = In(¢f) — %lnbt + (—1 + %) In L,

Taking log deviations:

Uy = Iy, — Ing

— _%(mbt —1Inb) + <—1 + %) (InL;, —InL)

1- 1\ -
= —h—(1-2)1L
¢ ( <>t
4. Log-Linearization of the Liquidity Aggregator

From the CES form, the log-linear approximation is:

L= (1—0)M +0b,

Substitute into the expression for @/A)t:

b=z (1-7) [ -0+ 1

:—(1—0)(1—%)1\%—E+9<1—%)]I§t



Simplifying the coefficients:

Uy =—(1—0) M, — (e+%> b,

5. Final Result

Uy = —(1—6) M, — <9+%> b,

This is the log-linearized expression for the convenience yield v, consistent with micro-
foundations where both money and bonds provide liquidity services.

Capital Accumulation:
For the capital accumulation equation we have

InK;,y =1In {f (%) K+ (1- 5)Kt}

Totally differentiating and rearranging terms yields:

I
kft+1 = 5/{?t + (?) it - 5]{:75 + (1 - 5)]{375

which gives us:

kt+1 - 5Zt + (]. - (S)kt (6)

Tobin’s Q:

From the FOC for I; we have —\; + ¢, f’ (II(—tt) = 0, which entails that ¢, = m

Gr _ M/ S U/ Ke)
t

Tobin’s Q gives us QQ = &£ = 5

N , which yields:

o [r ()]

when we totally differentiate this after taking logs we get:
11, (1 dl, 1
=—= — || = — - | dK
o= g () (% - )

q = —f"(0)6[iy — ki (7)

Aggregate Production Function

which yields:



Our aggregate production function is specified as:

dY, = AthlHtQ(lfa)(Hte)(lfﬂ)(lfa)
where d; is the standard price dispersion equation. Linearizing it, we get:
Yy = Qg + Oék't -+ Q(l — Oé)ht (8)

Inflation Utilizing the optimal reset price and the price dispersion equations, linearizing
them, and then combining conditions gets us our inflation equation:

(1-6)1—65)
0

Ty = —

Ty + BEm4 (9)

where x; is the real marginal cost.

Net Worth To start, we assume that only the fraction p of entrepreneurs survive each
period. Those that die "eat” their net worth:

Ci=01-pV

Where V, represents capital equity in the following manner:

Vi= (R — Ri1)(Qi1K; — Ny 1) + Re 1Ny

While the entrepreneur remains alive, his net worth can be defined as:

Ny = pVi + W

Where W is the entrepreneur’s wages. Here, p is close to 1 and entreprenurial wages are
small. As a result, we can say that:

Cf = Ny (10)

We assume that net worth follows:

Ny = pl(Rf — Ri1) Qi Ky + 7(Qin Ky — Ny) + Ry 1 Ny ] + wf
with

Ve = 7’/ Wtf(wt)Rthfthdwt
0

After taking logs and totally differentiating we end up with:

e

RK W
_p - 1) (4 g+ k) 4 e (1)

R

Rk
R

ny

N

K
(rf —re) + pR(re—1 + 1) + p— ( N
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1.2 Entrepreneurs

The default cutoff is implicitly defined by

Zi1 <Qth+1 — Nt> = Wit1 Rf+1 QiK1 . (12)
Define the leverage ratio as
I = QiK1
SN,

Then the loan rate satisfies:

Ly

_ ~ k
Zip1 = Wit Rt+1 .1
¢

_ (13)

The expected entrepreneurial income from obtaining a loan is

[ w1 G(wir1) dwiy Ry QuFyan — [1 - (I)(wt-&-l)} Ziw <Qth+1 - Nt> :

t+1

Using equation 16 to substitute for Z;,, the expression becomes

/ w1 O(wer1) dwpsr REyy QeKpyn — [1 - q)(@tﬂ)] @it RY Ly Qi -

t+1

Define o
f(@41) = / Wit P(wigr) dweyr — [1 - q)(@tﬂ)] Wiyt -

t+1

Then the expected entrepreneurial income is

f(@tJrl) Rfﬂ Qth+1 .

(Definition of f(i;41) as given above.)
Rewriting in terms of leverage L; = %ﬁ“, the firm’s expected return becomes

f(@i41) Rf+1 L.

The lender’s expected return from the project is

Wit1
/ wigr (1 — p) RYyy QeKir d(wirr) dwir + [1 - (I)((Dt+1>} Zi1 <Qth+1 - Nt) :
0

Using equation 16 again to eliminate 7,1, the lender’s expected return becomes

W41
{(1 - N)/ Wer1 G(wip1) dwipr + (1 — (I)(@t+1)>@t+1:| X Rerl QiK1 -
0
Define
Wt+1
9(@r41) = (1 = M)/ w1 P(We1) dwpr + (1 - ‘I)(@tﬂ))@tﬂ :
0
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Then the lender’s return on the loan is

Ly
Li—1

k _
Ry g (Wig1)
The entrepreneur chooses w; 1 and L; to maximize his expected return:

max  Ey| Ry, f(@i) L

Wiy, Lt

subject to the lender’s participation constraint

> R,.

RE g(w L >
t+1 ( t"l‘l)Lt_l

Equivalently, the participation constraint can be written as
Rf+1 9(@41) Ly = (Lt — 1) R, .

Form the Lagrangian for the entrepreneur’s problem:

L= Et{RfH f(@eg1) L + Mgy [Rf—i—l 9(@ey1) Ly — Re(Ly — 1)] } .
Taking the derivative with respect to ;1 yields:
Et{RfH f(@e1) Le + My R g (@41) Lt} =0.
Differentiating with respect to L; gives:
Et{Rf+1 F(@eg1) + Avyr | R 9(@14a) — Rt] } =0.
The participation constraint (which is binding) is
Ry 9(@i1) L = (Le — 1) Ry .

At steady state the multiplier satisfies

@)
A= g'(@)

Linearize around the steady state. Define the proportional deviation

diy 41

Wiyl =

w

and let A\;y; denote the deviation of A,y ;. Then, to first order,

Vi1 = Aegr



where

Linearize to obtain
Tf+1 — 1+l O = Mg
with
f'(@)
(@)’
and where [, denotes the percentage deviation of leverage.
Linearize to get

@
KH
Il

w

-

R 1
Tfﬂ — T+ Oy = -1 ly
where -
O, =w g (c_u) )
9(w)

Now I derive the financial accelerator (FA) leverage—spread equation with a CMR-style
risk shock. The derivation begins from the Bernanke-Gertler—-Gilchrist (BGG) contracting
block (as in Sims’ bbg_ers_ notes_final.pdf) and then introduces a time—varying dispersion
parameter (denoted ;) in the idiosyncratic return. This extra state leads to an augmentation

in the external finance premium equation, resulting in:

Thit+t1 — Tt = _V[nt — gt — kt+1} + X 0,

where 6, is the (log) deviation of o, from its steady state.

1.2.1 Recap of the BGG Setup (Without Risk Shocks)

In the standard BGG model, we denote (all variables are log—deviations from the steady

state):

[label=—]¢;: (log) price of capital, k;1: capital chosen in period ¢ for use in ¢ + 1,
ny: entrepreneurs’ net worth, 74,41: ex—post real return on capital, r;: risk—free real

_ ¢ Fe

interest rate, w;y1: default cutoff in idiosyncratic return, L; = . leverage ratio,
n

t
f(w) and g(w;): respectively, the share of returns kept by the entrepreneur and the
lender, and A\;yq: the Lagrange multiplier (from the lender’s participation constraint).

Sims’ notes present the following three linearized conditions (Sims’ egs. (53)—(55)):

Vw1 = Ay,

Thit1 — Tt + Ly +@f<f)t+1 = Ait1,
1
L—1

Tkt+1 — Tt + @g (I)t+1 =

gta



where we define the leverage wedge as
b= g+ ke — gy

and @, denotes the log—deviation of the cutoff (i.e. &;;; = dInw;y1). The parameters ¥,
Oy, and O, are steady-state elasticities derived from the functions f and g.
Eliminating w41 and A1 from 53-55 yields the BGG external finance premium:

v
U(L—1)—6,L

Tki+1 —T¢ = —V gt with v =

In other words,
Tkty1 — Tt = —V [nt — (Qt + kt+1)]-

1.3 Introducing the CMR Risk Shock

1.3.1 Time—Varying Dispersion in Idiosyncratic Returns

CMR assume that the idiosyncratic return shock follows a lognormal distribution with a
time—varying dispersion parameter o;:

W41 ™ GXP(Ut Ut+1), Utq1 ™ N(()? 1)-
Its law of motion is given by
log oy = pylog o1 + 7.
For convenience, define the log deviation (or percentage deviation) of o; from its steady state
as
o0y =logo; —logo.

1.3.2 Dependence of f and ¢g on oy

In the standard derivation, the functions f and g determine the shares of gross returns
retained by the entrepreneur and the lender. Now, because the density

dr(w)
depends on o;, we have
fe = (@, 0v), gt = g(@r, 01).

As a result, the log derivatives pick up extra terms. Define:

s Olnf
o7 = Jlno

and @g =

Similarly, if the multiplier \; depends on oy, define

o\ 8_@
Olno/ O\

—_
—
—
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1.4 Derivation of the FA-CMR Equation
1.4.1 Log-Linearized System Including Risk Shock

Re-linearize the three FOCs, retaining first-order terms in &,. This yields:

Vw1 + 20 = Ny,
Thit1 — Tt + 0 + Opipr + @?&f:)\tﬂ,

1
L—-1

S o A
Tk,t—&-l — Tt + Ggwt+1 -+ @g O = €t~

1.4.2 Eliminating &, and )\,

1: Solve Equation for A\ 1:
Air1 = VWi + =20y

2: Substitute this expression into Equation:
Tppp1 — Tt + 0 + O wypr + 0% 6, = Uy + 26y
Rearrange to isolate wy1:
O =) =l + (E— %) 6;.

3: Substitute A\;y1 into Equation:

ly.

S o A
Tkt+1 — Tt + @g W1 + 99 Oy = i3 1

We now have two equations (and the above) that contain &y, and 6.
4: Solve for wWyy1:

. —l; + (2 - 6%) 6
W41 = O;— U
Insert this into the third equation:
—l + (2 —09)a, 1
o e / 0% 5, = /¢
Tkit+t1 — Tt + Oy o,V + 9, 0 AR
Multiply both sides by ©; — ¥:
1

(OF =) (rr1 — 1) = =0y b + (O — ‘I’)L —

Thus,

Tkt+1 — Tt = —

11
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1.4.3 Step 5: Use the Steady—State Identity and Define New Parameters
Sims shows that in steady state one obtains an identity relating the elasticities:
O4(L—1) =—-0y.
Using this identity to simplify the coefficient on ¢; and defining:
v E(L-1)-63L+067(L-1)

v(I-1)-6,' X~ U(L—1)—6,L ’

V=

and recalling that ¢; = ¢; + ki11 — ny, Equation becomes

Thit1 — Tt = —V [Ny — q — kt+1] + X 0y

This is the FA-CMR leverage—spread equation with a risk shock. The coefficient v is identical
to its definition in the BGG model; it captures how the leverage ratio affects the external
finance premium. The new coefficient x reflects the sensitivity of the spread to the risk shock
;. A positive 6y (i.e., an increase in the dispersion of the idiosyncratic shocks) increases the
external finance premium, even if leverage is unchanged.

1.5 Foreign Block

Letting S; denote the nominal exchange rate of the home currency (the price of one unit
of foreign currency in terms of the home currency), we have the law of one price:

PtF — St PtF*

Where P is the domestic-currency price of the foreign good, and P/™ is the foreign currency
price of those goods. We define the prices of the domestic and the foreign goods in terms of
the consumer price index P;:

i
)
P
N

Where we indentify p/” as the real exchange rate. We can define the terms of trade as:

pH
TOT, = P—tF (16)

Which yields allows us to specify the home country’s export demand as:
EX, =TOT; " WT, (17)

Define the CPI inflation rate, foreign inflation rate, and the rate of change of the nominal
exchange rate, respectively, as:
R

By

Tt

12



Then we have:

al' =0, + 7
Setting foreign-currency import price to be constant (7} = 0), we get /" = 0. In logs, we
have p" = (In PI" — In P,). Therefore,

F F _ _F
Py = P01 =T — T

This give us the condition:

Pl =Pl =00 (18)
Using the two Euler equations from the household’s problem, we can derive the Uncovered
Interest Rate Parity (UIP), starting wth the FOC on BYS:

1

L _3E
" ﬁt[

1

RUS‘|
Cir1Pis1

Defining Pgl = Il;;1, and using the fact that RVS = 1 + rU9 + 1);, by log-linearizing the

condition we get:
e =—1{% — b + Cry1 + T
Performing the same procedure in the case of bl yields:
Ct — Sg = —TtF + Ciy1 — Se41 — 7Tt111 + T

Combining these two conditions gives us UIP:
Stp1 — St =10 —1f + U — 7Tf+1 (19)

1.6 Wage Inflation

Under Calvo wage setting, a household that reoptimizes in period ¢ chooses W} to max-

imize
D

> (B0, E, [At,t+j (U Wi Hesjie = Un Ht+j\t)} )
=0
subject to
W\ —pw
Ht+j|t = (Wi) Ht+j-

Upon taking FOCs, we get the standar optimal reset-wage condition:

w  2ge0(BO0) B[ Ay jUcyps HoyWEmr s, ]

Wi = ) : —
t Pw — 1 Z]’ZQ(ﬁew)jEt[Aut-‘rjUC,t-‘ert—i-thﬁig 1]

13



Linearizing the first-order condition around a symmetric steady state and defining

wy =W, —InP,, wgap; = w; — MRS;,

Where MRS, = g’;:

This yields

* 1 - ew - i
wy; —wy = — 6—6 Z(ﬁ 0) Ey [wgaptﬂ-]. (20)
H”;”_/jzo
Cw

1.6.1 Aggregation to Wage Inflation

The Calvo law of motion for aggregate wages implies
wy = Oy w1 + (1 —0,) wy,
so gross wage inflation is
YV =w, —wi_ = (1 — Qw)(wf — wt). (21)

Substitute (19) into (20):

o

WZV =—(1—0u)Cu Z(B ew)jEt [wg@ptﬂ}'

Jj=0

1.6.2 Forming the NKPC

Compute the one-period-ahead expectation:

o0

B Et[ﬂ-K/H] - - (1 - ew) Cw Z(ﬁ ew)jEt [w!]aptﬂ'} .

j=1

Subtract from 7}V:

" — BE[m,] = (1 — 0.) Cw wgapy.

1.6.3 Final Form

Define a1 0
Fw = (1—04)Cw = (1=0,) 1 =5 w).
O
Thus the final wage inflation rate:
Y = ﬁEt[ﬂ'KVi_l] — Kw WGap;.

14



1.7 Log-Linearized Equilibrium Conditions

Ye = himy + g + ey + iy
et = =1+ Eifci] — ¥ + mp

ce; = ny

Erkey] —re = —v(ng — ¢ — ki) + x 0}

rhy = (1 —e)(ye — k-1 — ) + € — G
g = (i — k1)
yy=a,+ak 1+ (1—a)Qh

yo—hy—xp—co=n""h

k=080 +(1—0)k_

ne = Y RRys(rky — 1—1) + 141 + nyq + €

rng = 0;rng_1 + (1 —6;) <0,T 7Tt(4) + 6, ytgap> + S ey

rny =1y 4 Ey[m)
Ay = Pq Qy—1 + Sq €f
Gt = Pg Gi—1 + Sg €]
b= q + ki —mny
hmy = ¢, — Ucfpf
Pf _P£1 :W{{ — T
Tt = (1 - TOpeH) 7TtH + Topen Ot
7TtH =p Et[ﬂf&-l] — Kp Ty
Ot = St — S¢—1
St — St—1 = Tt—1 — 7"tF_1 + 1 — Wf
ex; = —e toty + wi;
tot, = pf —p;
pi =Py = 0r— T
Wty = Pyt WEi—1 + Yoyt O + Oyt 67{“
0 = po iy 50 €
my = ¢ — Ucfpf
T =B Em] — ke wgap;
wygapy —wgapg—1 = WXV — T

Yy = —(1—0,) M, — <eg+ %) bUs

Ly = (1 —60,) M, + 6,b7%
M, = py My—q + egu
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S = o b+ (1= ) (v g0 + (1= 7)) (33)

2 Notes

Expenditure Minimization and Relative Demand Deriva-
tion
We assume households consume a CES composite good C; made up of domestically

produced goods H M; and imported goods I M;, according to the Armington aggregator:

_£
e—1 e—1 | e—1

Co=|(1—=NYE(HM,)= +XVe(IM)= |7, 0<A<l,e>1 (1)

The household chooses { HM;, IM,;} to minimize the total cost of achieving a given Cj,
taking prices as given.

Expenditure Minimization Problem

Let PH =1 (normalized domestic price) and let P}/" denote the relative price of imported
goods (in domestic good units). The problem is:

min ~ HM, + P - 1M,
HM;, IM;

£
e—1 e—11]¢e—-1

subject to:  Cy = |(1 — N)YE(HM,)™= + AVe(IM,) =

Lagrangian

Form the Lagrangian function with multiplier p;:

L= HM,+ PFIM,

e—1

— iy (Ul — NYE(HM,) = + Al/s(th)*’?} s Ct>

First-Order Conditions
Take the partial derivative with respect to H M;:

oL _ € 1/e el 1/e el ﬁ 1/e —1/e __
s = L [(1—/\) (HM,)= + \Y=(IM) ] (1= NYE L (HM) ™Y =0

Similarly, for I M;:

e—1

1
8%4 =P~ - 1 [(1 ~ NYE(HM,) + Al/E(JMt)tl] AV (TM) Y = 0
t J—

16



Relative Demand Equation

Divide the FOCs to eliminate y; and the bracketed composite term:

L _ (=N (IM Y HM, 1A (1Y
HM, PF

PF e
HM, 1-X[1\° @
IM, X \PF

This equation shows that the ratio of domestic to imported goods depends on their
relative price and the elasticity of substitution e.
We begin with the CES Armington aggregator for the consumption bundle:

1M, A

Co= (1= NVE(HM) = + A1) = | (1)
We also have the relative demand condition (derived from FOCs):
HM, 1-X/1\° 1-XA/1\°

S HM, = — 2 (=) IM p

I, ~ A (Pf) T (Pf) t 2

Step: Plug (2) into (1) to eliminate H M,
Substitute equation (2) into equation (1):

e—1

[ 1—Xx 1\

_ €

el e—1
- = Ja e (LA LY T
(IM,) {(1 ) ( opr)

e
e—1

e—1

1— 1)\ -
=IM, - [(1 —\)Ve (TA : ﬁ) + A\V/e
t

Solve for IM;

IM, = i -

Define the price index P,
From expenditure duality, the ideal price index for the aggregator is:
1
P, = [(1 - )‘)(PtH)kE + /\<PtF)17€} e (3)
If PH = 1, this simplifies to:

1
1

Pr=[(1=N) + AP

17



Final Result: Level Demands

We now obtain the Marshallian demand equations:

PH —€ PF
HM,=(1-)\ |-t ] C IM; = A | =%
t ( ) .Pt ts t B

—&

C

Below is a simulation of a one standard deviation risk shock.

IRFs in Response to Risk Shock

Output C Inve: Labor Inflation
0 05 0
0s N
o ’ 08 0.02
04 0
o8 - 0.04
06
s 1 15 0.06
o 10 20 30 o 1 20 30 o 10 20 30 o 10 20 30 o 1 20 30
Equity Capital Leverage Terms of Trade Exports
04 05 02
0.5 01
0.05 0.05 0
0 o 0
0 02
-0.05
05 05
0.05 05 0.1 04
0o 10 20 30 o 10 20 30 0 10 20 30 0 10 20 30 0o 10 20 30
Treasury Convenience Yield 02 Real Exchange Rate
0 06’-
0
0.04
0.02 02
0
04
0 10 20 30 0 10 2 30

Figure 1: Model IRFs

IRFs of model variables to a one standard deviation risk shock.
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